

 Bilkent University

Senior Design Project
Project short-name: GymFeat - AI Training Coach

Low Level Design Report

Talha Burak Çuhadar, Mustafa Çağrı Güngör, Ayşe Ezgi Yavuz, Gonca Yılmaz, Ravan

Aliyev

Supervisor: Halil Altay Güvenir

Innovation Expert: Emin Okutan

Feb 8, 2021

This report is submitted to the Department of Computer Engineering of Bilkent University in partial fulfillment of the

requirements of the Senior Design Project course CS491/2.

2

1. Introduction 3
1.1 Object design trade-offs 3

1.1.1 Understandability vs. Complexity 3
1.1.2 Portability vs. Development Time 4
1.1.2 Pose Estimation Accuracy vs. Memory 4
1.1.3 Reliability vs Rapid Development 4

1.2 Interface documentation guidelines 4
1.3 Engineering standards (e.g., UML and IEEE) 5
1.4 Definitions, acronyms, and abbreviations 5

2. Packages 6
2.1 Client 6

2.1.1 Controller 6
2.1.2 View 8
2.1.3 Data 10

2.2 Server 11
2.2.1 Controller 11
2.2.2 Model 12

3. Class Interfaces 13
3.1 Client 13

3.1.1 Controller 13
3.1.2 View 15
3.1.3 Data 22

3.2 Server 23
3.2.1 Controller 23
3.2.2 Model 26

4. Glossary 29

5. References 30

3

1. Introduction

Given the importance of healthy life, sports itself play a prominent role to develop a

healthy body. Not only it helps people to develop the muscle mass, but it also improves the

health of one’s mind [1]. According to the researches about how sport affects the health of

mind, it is shown that doing exercises “positively impacts the level of serotonin, a chemical

that helps regulate mental health”, reduces the level of stress, improves mood, and distracts

people from negative thoughts [2, 3]. In addition to these impacts of sport on mind, it also

boosts the immune system [4]. Therefore, we should always prioritize doing exercises in our

lives.

In normal circumstances, some people would prefer to go to the gym, and some

people would prefer to do exercises at home and there used to be a trade-off between them.

However, since the beginning of the pandemic, people are seeking new means to stay active

inside the house, because many parts of our lives remain restricted. At this moment

“maintaining an exercise routine at home can seem more like a ‘should’ than a ‘want to’”

says Shannon Collins, an Integrative Manual Physical Therapist [4]. We, as a team, would

like to encourage people to be more active at home.

Nevertheless, when people work out at home without the guidance of an expert, there

is a risk of getting injured. Imagine yourself, trying to preserve your healthy body and mind,

and while doing so, getting injured. Our project idea started out with the question, how we

can prevent people suffering from exercise-related injuries, i.e. sprains, muscle strains,

tendinitis, and so on. According to an article from Harvard Health Publishing, people should

choose their workout carefully, learn the proper technique in order to prevent injuries and

drink water to stay hydrated [5]. Hence, we would like to address these issues and provide a

mobile application, which will prepare a training program for you, check your body

movement to make sure that you are applying each movement correctly, and remind you of

drinking water during the training.

1.1 Object design trade-offs

1.1.1 Understandability vs. Complexity
Our application is designed with the aim of providing users an opportunity to complete their

training with only one application. In order to achieve this purpose, we included multiple

functionalities during the design process including the gym program and AI trainer However,

4

it might be problematic for users to learn the use of all of the functionalities at the beginning.

In order to find the balance between understandability and complexity, we limited the number

of functionalities.

1.1.2 Portability vs. Development Time
In order to ensure that GymFeat is easily portable and available on multiple platforms, we

decided to use the Node.js and Ionic frameworks which enable us to deploy the resulting

product into multiple platforms including the web and mobile. We decided to continue with

these frameworks considering the trade off between the importance of portability and the

longer development time.

1.1.2 Pose Estimation Accuracy vs. Memory
GymFeat is an app that estimates the pose of the users to analyze their training to give them

appropriate feedback. For pose estimation, we decided to use the Resnet50 model which

requires memory more than 100 MB because it estimates the pose with higher accuracy.

1.1.3 Reliability vs Rapid Development
We are planning to start with a rapid and agile development strategy to have a minimum

viable product in our hands that might not be reliable enough to satisfy our project

requirements. Then, we will gradually work on this product to increase its reliability and

other functionalities. To sum up, rapid development is favored in the first stage of the project,

and reliability is considered in the later stages.

1.2 Interface documentation guidelines
This report follows the generic guidelines for class interfaces. The class names are written as

“ClassName”. As for variables, they are written in the standard form “variableName” and

method names are shown as “methodName()”. As for constructors, the naming is done as

“ClassName()” and they are shown under “Methods". In the class interface, first the class

names are written, then the properties attributed to that specific class, and finally the

methods. The class interface is shown as the following:

class ClassName

The description of the class is written here.

Properties

5

1.3 Engineering standards (e.g., UML and IEEE)
In this report, the IEEE standards will be used for citations and references, since IEEE

standards are widely used for reports in the field of computer science [6]. For the diagrams,

UML guidelines are followed [7]. Because UML is used as a general-purpose modeling

language often in the software engineering field [8].

1.4 Definitions, acronyms, and abbreviations
● Back-end: The back end of a website consists of a server, an application, and a

database [9].

● Class: “A generalized description of a project” [10]

● Client: A computer (Host), which is capable of using a particular service or receiving

new information from servers, or in other words service providers [11].

● Controller: The controller of Model and View, it accepts input from the user and also

updates the necessary components [12].

● Method: Indicates the behavior of the objects associated with a class [13].

● Model: Data used by program, i.e. database, file, or a simple object [12].

● Property: The attributes associated with a class [14].

● Server: A remote computer, which provides information, or services to the Client

[11].

● UI: It is an abbreviation for User Interface, that is where the human-computer

interaction and communication occurs [15].

Properties are listed here.

private int variableName1

public String variableName2

Methods

Methods are listed here.

public methodName1(): the functionality of the method 1

private methodName2(): the functionality of the method 2

6

● View: The means of displaying an object within the application, basically anything

the user can see [12].

2. Packages

2.1 Client
The client consists of 3 subsystems respectively Controller subsystem, View subsystem and

Data subsystem. Due to the architecture of our application, the controller subsystem consists

of the controllers that are without views. Whereas, the view classes will be mentioned as

managers. The view classes will hold their controllers within them. The controller subsystem

will be responsible for the operations done to data, sending data to the server and when

responses are taken for requests, the Controller collects it. View subsystem will be

responsible for interface operations and again, managing the communication between the

view itself and the corresponding server element. Displaying pages or taken data on the

screen will be done by the view subsystem. Data subsystem handles local storage for the

output photos of users.

2.1.1 Controller

The controller subsystem is responsible for handling the events that are received from the UI

components that will be mentioned in the View.

7

Figure 1: Controller Package Diagram

AITrainer

This class is responsible for fetching the analysis of the movement from AIAnalyzer and

communicating with the AIPrompter.

AIPrompter

This class is responsible for prompting the user the necessary introductions and warnings

related to the exercise.

AIAnalyzer

This class uses the PoseEstimator and according to the pose estimation, it analyzes the

movements, creates score and feedback, and counts the set and the repetitions of a certain

exercise.

PoseEstimator

This class gets the data from CamView and estimates the pose.

8

2.1.2 View

The view subsystem is responsible for receiving and arranging inputs and posting them to the

server and also receiving, arranging and displaying the data sent from the server.

Figure 2: View Package Diagram

HomepageManager

This view is the main view that will display the information about the application mission.

9

LoginViewManager

This view is to receive input from the user for login.

SignUpViewManager

This view is to receive user information for signing up the user.

SettingsViewManager

This class is responsible for allowing the user to change the settings of the application.

CreateARoutineViewManager

This view is to receive user input for arranging a workout program for them.

CalendarViewManager

This view is the main page after sign-in of the user (whether anonymously or with profile). It

will display a real calendar with the user’s workouts.

ProfileManager

This view is responsible to display the logged in user information. It will allow the user to

modify the information. It will also display the finished workouts by the user.

CamView

This view is using the user webcam to detect the movement of users and send the movements

to the PoseEstimator.

WorkoutSelectManager

With this class, the user is able to select workouts and download them to ease access during

the workout session.

WorkoutManager

This class is responsible for managing the workout session and fetching the selected workout

for the user.

TutorialViewManager

This class is responsible for showing the tutorial video to the user.

10

AchievementsViewManager

This class is responsible for the view of achievements.

2.1.3 Data

This subsystem manages the local storage, in which the introduction videos and the voices

related to a certain exercise are kept.

Figure 3: Data Package Diagram

PromptCollection

This class holds the array of ExerciseIntroduction, which includes the information and the

video file of each introduction video, and the array of Voice, which consists of the recording

and the related information to that voice.

ExerciseIntroduction

This class is responsible for holding the introduction video of a single exercise and the related

information to that single exercise.

Voice

This class is responsible for keeping the voice recording and information of the recording.

11

2.2 Server

2.2.1 Controller

Figure 4: Controller Package Diagram

ClientCommunicationManager

This class is responsible for managing the communication between the server and the client.

Each request made to the server side will be routed in this class.

DatabaseCommunicationManager

This class is responsible for managing the communication between the server’s logic tier and

data tier. This class will create objects from the data fetched from the database.

AuthenticationManager

This class is responsible for carrying out authentication activities such as signing in, signing

up, signing out etc.

SingleExerciseManager

This class is responsible for creating and editing single exercises for a user.

12

WorkoutManager

This class is responsible for creating and editing workouts for a user.

CalendarManager

This class is responsible for managing the workout program of a certain user.

2.2.2 Model

Figure 5: Model Package Diagram
User

This class is a model data class responsible for holding user data such as name, surname,

height, weight, date of birth etc.

SingleExercise

This class is a model data class responsible for holding data of a single exercise.

Workout

This class is a model data class responsible for holding workout data. A workout consists of

several single exercises.

13

Calendar

This class is a model data class, which is responsible for holding the workout schedule

information.

3. Class Interfaces

3.1 Client

3.1.1 Controller

class AITrainer

This class is responsible for fetching the analysis of the movement from AIAnalyzer and

communicating with the AIPrompter.

Properties

private String exerciseName

private int totSetCount

private int totRepCount

public boolean isWorkout

Methods

public void doWorkout(): it constantly checks the score, the repetition count, and the set
count and when necessary, calls the AIPrompter

private void checkScore(): checks the score and if it is below a threshold, then calls the
AIPrompter to prompt a warning to user, otherwise it calls the AIPrompter to prompt a
motivating message

private void checkRepetition(): this function checks the repetition count and whenever a
repetition is completed, it calls AIPrompter to prompt a message to the user

private void checkSetCount(): this function checks the set count and whenever a set is
completed, it calls AIPrompter to prompt a message to the user

public void setIsWorkout(boolean isWorkout): sets the property, isWorkout.

14

class AIPrompter

This class is responsible for prompting the user the necessary introductions and warnings

related to the exercise and it communicates with AITrainer.

Properties

private PromptCollection collection

private String selectedVoiceActor

Methods

private ExerciseIntroduction getIntro(int id): returns the exercise introduction by id

public ExerciseIntroduction getIntro(String exerciseType): this function computes the id of
the desired exercise introduction, calls getIntro(int id) method and returns the exercise
introduction by exercise type

private Voice getVoiceMessage(int id): returns the Voice object by id

public Voice getVoiceMessage(String messageType): this function computes the id of the
desired voiceMessage, calls getVoiceMessage(int id) method and returns the Voice object
by message type

public String getSelectedVoiceActor(): returns the name of the selected voice actor

public void setSelectedVoiceActor(String voiceActor): sets the voice actor

class AIAnalyzer

This class uses the PoseEstimator and according to the pose estimation, it analyzes the

movements, creates score and feedback, and counts the set and the repetitions of a certain

exercise.

Properties

private PoseEstimator estimator

private int score

private int setCount

15

3.1.2 View

The view classes for the application are explained. The render function is left out since it is
the default function for displaying components on screen hence it is included in all of the
views.

private int repetitionCount

Methods

public void analyzeMovement(): this function analyzes the movement by computing score,
checking if the current repetition, and the current set is completed.

private int computeScore(): returns the score

private boolean isSetCompleted(): returns true, if the current set is completed

private boolean isRepetitionCompleted(): returns true, if the current repetition is completed

class PoseEstimator

This class gets the data from CamView and estimates the pose.

Properties

private JPEGFile frame

Methods

public int Array estimatePoints(): returns the array of estimated location of body points on
the frame

class HomePageManager

This view is the main view that will display the information about the application mission.

Properties

private String welcomeText

private Icon gymfeatLogo

16

Methods

private void handleWelcomeText(): creates and handles the welcome text for displaying

private void directToWorkout(): directs user to workout list page

private void directToCalendar(): directs user to calendar page

private void directToCreateProgram(): directs user to create a routine page

class LoginViewManager

This view is to receive input from the user for login.

Properties

private String email

private String password

Methods

public void login(): sends the information to back-end to log the user in

public void directToHome(): directs user to the home page

public void directToSignUp(): directs user to the sign up page

class SignUpViewManager

This view is to receive user information for signing up the user.

Properties

private String email

private String password

private String name

private String gender

Methods

17

public void signUp(): sends the information to back-end to sign the user up

public void directToHome(): directs user to the home page

public void directToLogin(): directs user to the login page

class SettingsManager

This class is responsible for allowing the user to change the settings of the application.

Properties

private boolean isIntroOn

private boolean isVoiceOn

private boolean isNotificationsOn

private String voiceActor

Methods

public void toggleIntro(): turns on the introduction tutorials at the beginning of each single
exercise

public void toggleVoice(): turns on the voice to get warnings and prompts during the
workout

public void toggleNotifications(): toggles the notification preference

public void selectVoiceActor(): selects the

public void directToPrev(): directs the user to the previous page

class CreateARoutineViewManager

This view is to receive user input for arranging a workout program for them.

Properties

private int weight

private String weightMeasurementType

18

private int height

private String heightMeasurementType

private String workoutGoal

private int pastWorkoutFreq

private int desiredWorkoutFreq

private int availableDays

private int availableHours

Methods

public void createARoutine(): sends the information to the back-end

public void directToCalendar(): directs user to the calendar page

class CalendarViewManager

This view is the main page after sign-in of the user (whether anonymously or with profile).

It will display a real calendar with the user’s workouts.

Properties

private String Array workouts

Methods

public void startTodaysWorkout(): directs user to workout page

public void directToHome(): directs user to home page

public void clickOnADate(): shows the workout information of that date to the user

public void directToProfile(): directs user to the profile page

class ProfileManager

19

This view is responsible to display the logged in user information. It will allow the user to

modify the information.

Properties

private String email

private String password

private String name

private String gender

private int weight

private String weightMeasurementType

private int height

private String heightMeasurementType

private String workoutGoal

private int pastWorkoutFreq

private int desiredWorkoutFreq

private int availableDays

private int availableHours

private String Array pastWorkouts

Methods

pripublicvate void fetchUserInfo(): fetches current user’s information

public void handleUserInfo(): handles user information to show

public void updateUserInfo(): updates the user information that is changed by the user

public void directToPrev(): directs user to the previous page

public void directToAchievements(): directs user to achievements view

class AchievementsViewManager

20

This class is responsible for the view of achievements.

Properties

private String Array achievements

private Icon Array achievementLogos

Methods

public void fetchAchievements(): fetches the achievements related to a certain user

public void fetchAchievementLogos(String Array achievements): fetches the logos of
achievements

public void directToProfile(): directs the user back to the profile page

class CamView

This view is using the user webcam to detect the movement of users and send the

movements to the PoseEstimator.

Properties

private JPEGFile frame

Methods

public void catchFrame(): catches the frame and sends it to the controller for further
process

class WorkoutSelectManager

With this class, the user is able to select workouts and download them to ease access during

the workout session.

Properties

private String Array workouts

private String workoutSelected

Methods

public void selectWorkout(): selects the workout that is chosen by the user and shows its

21

details

public void directToWorkout(): directs the user to a specific workout

class WorkoutManager

This class is responsible for managing the workout session and fetching the selected

workout for the user.

Properties

private CamView camera

private boolean isWorkoutStarted

private boolean isWorkoutPaused

private boolean isTutorialState

Methods

public void pauseWorkout(): pauses the workout in process

public void startWorkout(): starts the workout

public void fetchTutorial(String exerciseType): fetches the tutorial if “Show Tutorial” is
on, and makes isTutorialState true

public void fetchWorkoutInfo(): fetches the information of the workout

class TutorialViewManager

This class is responsible for showing the tutorial video to the user.

Properties

Methods

public void skipTutorial(): this function skips the tutorial.

22

3.1.3 Data

class PromptCollection

This class holds the array of ExerciseIntroduction, which includes the information and the
video file of each introduction video, and the array of Voice, which consists of the
recording and the related information to that voice.

Properties

private ExerciseIntroduction Array intros

private Voice Array voices

Methods

public ExerciseIntroduction getIntro(int id): returns the ExerciseIntroduction according to
the id

public ExerciseIntroduction getIntro(String exerciseType): returns the ExerciseIntroduction
according to the type of the exercise

public Voice getVoice(int id): returns the voice according to its id

public Voice getVoice(String messageType): returns the voice according to the message
type, whose voice actor is the default one

public Voice getVoice(String messageType, String voiceActor): returns the voice
according to the message type and the voice actor

class ExerciseIntroduction

This class is responsible for storing the introduction and the related single exercise type.

Properties

private int id

private String exerciseType

private MPEGFile intro

Methods

public int getId(): returns the id of the exercise introduction

public String getExerciseType(): returns the exerciseType property of the class

public MPEGFile getIntro(): returns the MPEGFile intro video of the class

23

3.2 Server

3.2.1 Controller

class Voice

This class is responsible for storing the voice and the related information.

Properties

private int id

private String messageType

private String voiceActor

private WAVFile record

Method

public int getId(): returns the id of the voice

public String getMessageType(): returns the messageType property of the class

public String getVoiceActor(): returns the voice actor of the voice

public WAVFile getRecord(): returns the record

class ClientCommunicationManager

This class is responsible for handling the request made to the server and sending its

response.

Properties

Methods

public void handleRequest(string request): receives the request in string format and handles
and routes the request to the other classes.

24

class DatabaseCommunicationManager

This class is responsible for communicating with the database and creating model classes

using the data stored in the database.

Properties

Methods

public User getUser(int userId): using the userId, fetches the user data from the database,
creates a user object and returns the user object.

public SingleExercise getSingleExercise(int singleExerciseId): using the singleExerciseId,
fetches the single exercise data from the database, creates a single exercise object and
returns the object.

public Workout getWorkout(int workoutId): using the workoutId, fetches the workout data
from the database, creates a workout object and returns the object.

public Calendar getCalendar(int calendarId): using the calendarId, fetches the calendar data
from the database, creates a calendar object and returns the object.

public void setUser(int userId, User u): takes the edited user information and updates the
user data in the database using the userId. If the userId is not existent, creates a new user.

public void setSingleExercise(int singleExerciseId, SingleExercise s): takes the edited
single exercise and updates the single exercise data in the database using the
singleExerciseId. If the singleExerciseId is not existent, creates a new single exercise.

public void setWorkout(int workoutId, Workout w): takes the edited workout information
and updates the workout data in the database using the workoutId. If the workoutId is not
existent, creates a new workout.

public void setCalendar(int calendarId, Calendar c): takes the edited calendar information
and updates the calendar data in the database using the calendarId. If the calendarId is not
existent, creates a new calendar.

class AuthenticationManager

25

This class is responsible for authentication use cases such as signing in, signing out and

signing up.

Properties

Methods

public Token signIn(string username, string password): signs in the user and returns a
token representing the session state of the user.

public void signOut(Token t): signs out the user correlated with the session token, makes
the token void.

public Token signUp(string username, string password, string email): signs up the user
using the credentials they give.

private void updateDatabase(): uses the DatabaseCommunicationManager class to update
the database when a new user is created. This method is called inside the signIn method.

class SingleExerciseManager

This class is responsible for creating and editing single exercises.

Properties

Methods

public SingleExercise createSingleExercise(User u, Map singleExerciseDetails): creates
the requested single exercise for the given user.

public void editSingleExercise(User u, Map singleExerciseDetails): edits the single
exercise of the user.

class WorkoutManager

This class is responsible for creating and editing workouts.

Properties

26

3.2.2 Model

Methods

public Workout createWorkout(User u, Map workoutDetails): creates the requested
workout for the given user.

public void editWorkout(User u, Map workoutDetails): edits the workout of the user.

public void addSingleExercise(Workout w, SingleExercise s): adds single exercise to the
workout.

public void removeSingleExercise(Workout w, SingleExercise s): removes single exercise
from the workout.

class CalendarManager

This class is responsible for creating and editing calendar.

Properties

Methods

public Calendar createCalendar(User u, Map calendarDetails): creates the requested
calendar for the given user.

public void editCalendar(User u, Map calendarDetails): edits the calendar of the user.

public void addCalendar(Calendar c, Workout w): adds workout to the calendar.

public void removeCalendar(Calendar c, Workout w): removes workout from the calendar.

class User

This class is a model data class responsible for holding user data.

Properties

27

private int id

private String name

private String surname

private string gender

private int height

private String heightMeasurementType

private int weight

private String weightMeasurementType

private int age

Methods

User() : constructor for this class

public int getid(): returns the ID of the user

public String getName(): returns the name of the user

public void setName(): sets the name of the user

public string getGender(): returns the gender of the user

public void setGender(): sets the gender of the user

public int getHeight(): returns the height of the user

public void setHeight(): sets the height of the user

public String getHeightMeasurementType(): returns the height measurement type

public int getWeight(): returns the weight of the user

public void setWeight(): sets the weight of the user

public String getWeightMeasurementType(): returns the weight measurement type

public int getAge(): returns the age of the user

public void setAge(): sets the age of the user

class SingleExercise

This class is a model data class responsible for holding data of a single exercise.

Properties

private String exerciseName

28

private int setCount

Methods

SingleExercise(): constructor of this class

public void changeSetCount(int a): changes the set count

public int getSetCount(): returns the set count

public String getExerciseName(): returns the exercise name

class Workout

This class is a model data class responsible for holding workout data. A workout consists

of several single exercises.

Properties

private String workoutName

private SingleExercise[] exercises

Methods

Workout(): constructor method for this class

public SingleExercise getSingleExercise(String ExerciseName): returns the SingleExercise

class Calendar

This class is a model data class, which is responsible for holding the workout schedule

information.

Properties

private Workout[] completedWorkouts

29

4. Glossary

As the abbreviations are already defined in section 1.4, this section contains the information

in which pages these words are being used.

Back-end: 5, 16, 17, 18

Class: 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29

Client: 5, 6, 12, 13, 23

Controller: 5, 6, 7, 11, 13, 20, 23

Method: 4, 5, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29

Model: 4, 5, 12, 13, 24, 26, 27, 28

Property: 13, 22, 23

Server: 6, 8, 11, 23

UI: 6

View: 5, 6, 7, 8, 10, 15, 16, 17, 18, 19, 20

private Workout[] currentWorkouts

Methods

Calendar(): constructor method for this class

public Workout[] getCompletedWorkouts(): returns the completed workouts

public Workout[] getCurrentWorkouts(): returns the completed workouts

public void addCompletedWorkout(Workout w): adds the workout to the completed

workouts

public void addCurrentWorkouts(Workout w): adds the workout to the current workouts

public void rmCurrentWorkouts(Workout w): removes the workout from the current

workouts

30

5. References

[1] “What Is the Importance of Sports in Our Life?,” Impoff, 2020. [Online]. Available:

https://impoff.com/importance-of-sports/. [Accessed: 12- Oct- 2020].

[2] “Sports and Mental Health | Newport Academy,” Newport Academy, 2020. [Online].

Available:

https://www.newportacademy.com/resources/mental-health/sports-and-mental-health/

. [Accessed: 12- Oct- 2020].

[3] “Top 6 benefits of sports and physical activity on mental health – Sport Energy,”

Sportenergy.club, 2020. [Online]. Available:

https://sportenergy.club/2020/02/21/top-6-benefits-of-sports-and-physical-activity-on-

mental-health/. [Accessed: 12- Oct- 2020].

[4] M. Weber, “Exercise During Coronavirus: Tips for Staying Active - HelpGuide.org,”

Helpguide.org, 2020. [Online]. Available:

https://www.helpguide.org/articles/healthy-living/exercise-during-coronavirus.htm.

[Accessed: 12- Oct- 2020].

[5] H. Publishing, “10 tips to prevent injuries when you exercise - Harvard Health,”

Harvard Health, 2020. [Online]. Available:

https://www.health.harvard.edu/pain/10-tips-to-prevent-injuries-when-you-exercise.

[Accessed: 12- Oct- 2020].

[6] “1016-1987 - IEEE Recommended Practice for Software Design Descriptions,” IEEE

Xplore. [Online]. Available: https://ieeexplore.ieee.org/document/565312. [Accessed:

07-Feb-2021].

[7] Opennetworking.org, 2021. [Online]. Available:

https://opennetworking.org/wp-content/uploads/2014/10/UML_Modeling_Guidelines

_V1.0.pdf. [Accessed: 07- Feb- 2021].

[8] Amit, “All You Need to Know About UML Diagrams: Types and 5+ Examples,”

Tallyfy, 26-Feb-2020. [Online]. Available:

https://tallyfy.com/uml-diagram/#what_is_the_use_of_uml. [Accessed: 07-Feb-2021].

31

[9] “Front-End vs Back-End vs Full Stack Web Developers,” Udacity, 10-Jan-2020.

[Online]. Available:

https://blog.udacity.com/2014/12/front-end-vs-back-end-vs-full-stack-web-developers

.html. [Accessed: 27-Dec-2020].

[10] “Software Engineering: Object Oriented Design - javatpoint,” www.javatpoint.com.

[Online]. Available:

https://www.javatpoint.com/software-engineering-object-oriented-design. [Accessed:

08-Feb-2021].

[11] “Client-Server Model,” GeeksforGeeks, 15-Nov-2019. [Online]. Available:

https://www.geeksforgeeks.org/client-server-model/. [Accessed: 08-Feb-2021].

[12] “MVC,” MVC (Model-View-Controller) Definition. [Online]. Available:

https://techterms.com/definition/mvc#:~:text=Stands%20for%20%22Model%2DVie

w%2D,for%20developing%20modern%20user%20interfaces. [Accessed:

08-Feb-2021].

[13] Study.com. [Online]. Available:

https://study.com/academy/lesson/oop-object-oriented-programming-objects-classes-i

nterfaces.html. [Accessed: 08-Feb-2021].

[14] Java Fundamentals Tutorial: Object Oriented Programming in Java. [Online].

Available:

https://www.protechtraining.com/content/java_fundamentals_tutorial-object_oriented.

[Accessed: 08-Feb-2021].

[15] T. T. Contributors, “What is User Interface (UI)?,” SearchAppArchitecture,

13-Aug-2019. [Online]. Available:

https://searchapparchitecture.techtarget.com/definition/user-interface-UI. [Accessed:

27-Dec-2020].

